- Home
- /
- Rechenzentrum, Netzwerke & Cloud
- /
- Betriebssysteme
- /
- Microsoft Server
- /
- Microsoft Azure
- /
- Entwerfen und Implementieren einer...
Entwerfen und Implementieren einer Data Scientist Lösung unter Azure
Schulungsinhalt
- Entwurf einer Strategie zur Datenaufnahme für Projekte des maschinellen Lernens“.
- Entwurf einer Lösung für das Training von Modellen für maschinelles Lernen
- Entwerfen einer Lösung für die Bereitstellung von Modellen
- Erkunden Sie die Ressourcen und Assets des Azure Machine Learning-Arbeitsbereichs
- Entwicklertools für die Interaktion im Arbeitsbereich erkunden
- Daten in Azure Machine Learning verfügbar machen
- Arbeit mit Berechnungszielen in Azure Machine Learning
- Arbeit mit Umgebungen in Azure Machine Learning
- Finden Sie das beste Klassifizierungsmodell mit automatisiertem maschinellem Lernen
- Modelltraining in Jupyter-Notebooks mit MLflow verfolgen
- Ausführen eines Trainingsskripts als Befehlsauftrag in Azure Machine Learning
- Modelltraining mit MLflow in Aufträgen verfolgen
- Ausführen von Pipelines in Azure Machine Learning
- Hyperparameter-Abstimmung mit Azure Machine Learning durchführen
- Bereitstellen eines Modells auf einem verwalteten Online-Endpunkt
- Bereitstellen eines Modells für einen Batch-Endpunkt
Zielgruppe
Dieser Kurs richtet sich an Datenwissenschaftler mit vorhandenen Kenntnissen in Python und Machine-Learning-Frameworks wie Scikit-Learn, PyTorch und Tensorflow, die Machine-Learning-Lösungen in der Cloud aufbauen und betreiben wollen.
Seminarziele
Erhalten Sie wichtige Kenntnisse über die Verwendung von Azure Services um Machine Learning Lösungen zu entwickeln, trainieren und bereitzustellen. Der Kurs beginnt mit einem Überblcik über Azure Dienste die Data Science unterstützen. Von hier an konzentriert er sich auf Azure‘s ersten Data Science Service, Azure-machine-learning-service, um Data Science Pipelines zu automatisieren. Der Kurs konzentriert sich auf Azure und lehrt die Teilnehmer nicht, wie Data Science erledigt wird. Es wird davon ausgegangen, dass die Studenten das wissen.
Zertifizierungen
Empfohlenes Training für die Zertifizierung zum:
- Microsoft Certified: Azure Data Scientist Associate
Vorkenntnisse
Erfolgreiche Azure Data Scientists beginnen ihre Tätigkeit mit grundlegenden Kenntnissen über Cloud Computing-Konzepte und Erfahrung mit allgemeinen Data Science- und Machine Learning-Tools und -Techniken.
Konkret:
- Erstellen von Cloud-Ressourcen in Microsoft Azure.
- Verwendung von Python zur Erforschung und Visualisierung von Daten.
- Training und Validierung von Machine-Learning-Modellen mit gängigen Frameworks wie Scikit-Learn, PyTorch und TensorFlow.
- Arbeiten mit ContainernUm diese Grundkenntnisse zu erwerben, sollten Sie vor der Teilnahme am Kurs die folgende kostenlose Online-Schulung absolvieren:
- Erkunden Sie die Microsoft Cloud-Konzepte.
- Erstellen Sie Modelle für maschinelles Lernen.
- Verwalten von Containern in AzureWenn Sie völlig neu im Bereich Data Science und maschinelles Lernen sind, sollten Sie zunächst die Microsoft Azure AI Fundamentals absolvieren.
Seminardauer
Preis
Präsenzseminar/FLEXINAR®:
LIVEINAR®:
Individual Training: Preis auf Anfrage
Inhouse Training: Preis auf Anfrage
Seminarnummer
Martin Heubeck
Group Leader Sales
- martin.heubeck@protranet.de
Beratungszentrale und Buchungshotline:
- 0800 3400311
- beratung@protranet.de
Kataloge
Formate